If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+8.3x-4.8=0
a = 4.9; b = 8.3; c = -4.8;
Δ = b2-4ac
Δ = 8.32-4·4.9·(-4.8)
Δ = 162.97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8.3)-\sqrt{162.97}}{2*4.9}=\frac{-8.3-\sqrt{162.97}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8.3)+\sqrt{162.97}}{2*4.9}=\frac{-8.3+\sqrt{162.97}}{9.8} $
| 15+4t=40 | | 85=9/5*c+32 | | 96=9/5*c+32 | | 2t-18t=144 | | 6n-3-n-n-4=-30 | | 4k-9=0.01 | | -2(p-5)+8p=-5 | | 3/4+1/5t=2 | | 9r+5=44r+12 | | 0.35n=7 | | 75+2.5x=225 | | 8+2z-2=8z+7-5z | | -1=m-3/34 | | 0.6k=600 | | 0.6k=6000 | | (3a+50)°=104° | | 19+v/3=13 | | 2m=0.5 | | -x^2-14x-37=0 | | -6y-15=2y+17 | | 12=-7+k/2 | | 42+7/8r=-42 | | 6(x+3)/4=2x-4 | | r3+ 2=4 | | 3n+8=32+n | | 4w^2-4w-224=0 | | (4x-8)+(x+4)=180 | | 17y=476 | | 5+15x+45x^2=0 | | 3(q+7)=21 | | 4/14x+x=780 | | 5x-9=12x-6 |